Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks

Amine Najahi

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506
CNRS, LIRMM, UMR 5506
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy and fast to implement</td>
<td>Requires dedicated hardware</td>
</tr>
<tr>
<td>Easily portable</td>
<td>Slow if emulated in software</td>
</tr>
<tr>
<td>(IEEE754)</td>
<td></td>
</tr>
</tbody>
</table>

- Floating-point computations:
 - Tedious and time consuming to implement
 - 50% or more of design time [Wil98]
 - Relies only on integer instructions
 - Efficient

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS)
Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌡️ Easy and fast to implement</td>
<td>🙁 Tedious and time consuming to implement</td>
</tr>
<tr>
<td>🌡️ Easily portable [IEEE754]</td>
<td>• > 50% of design time [Wil98]</td>
</tr>
</tbody>
</table>

Floating-point computations are easy and fast to implement, and easily portable. They rely on dedicated hardware, which makes them slow if emulated in software. Fixed-point computations, on the other hand, may be tedious and time-consuming to implement, and often rely on integer instructions. However, fixed-point arithmetic is well suited for embedded systems, such as µ-controllers, DSPs, and FPGAs, which have efficient integer instructions.
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Easy and fast to implement</td>
<td>☐ Tedious and time consuming to implement</td>
</tr>
<tr>
<td>☑ Easily portable [IEEE754]</td>
<td>☐ > 50% of design time [Wil98]</td>
</tr>
<tr>
<td>☒ Requires dedicated hardware</td>
<td>☑ Relies only on integer instructions</td>
</tr>
<tr>
<td>☒ Slow if emulated in software</td>
<td>☑ Efficient</td>
</tr>
</tbody>
</table>

Fixed-point arithmetic is well suited for embedded systems
Which arithmetic for computational tasks?

Floating-point computations
- Easy and fast to implement
- Easily portable [IEEE754]
- Requires dedicated hardware
- Slow if emulated in software

Fixed-point computations
- Tedious and time consuming to implement
 - > 50% of design time [Wil98]
- Relies only on integer instructions
- Efficient

Embedded systems targets
- μ-controllers
- DSPs
- FPGAs

→ have efficient integer instructions

- Fixed-point arithmetic is well suited for embedded systems
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>☺ Easy and fast to implement</td>
<td>☹ Tedious and time consuming to implement</td>
</tr>
<tr>
<td>☻ Easily portable [IEEE754]</td>
<td>• > 50% of design time [Wil98]</td>
</tr>
<tr>
<td>☹ Requires dedicated hardware</td>
<td>☻ Relies only on integer instructions</td>
</tr>
<tr>
<td>☹ Slow if emulated in software</td>
<td>☻ Efficient</td>
</tr>
</tbody>
</table>

Embedded systems targets

- μ-controllers
- DSPs
- FPGAs

→ have efficient integer instructions

- Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?
The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate fixed-point programming
The DEFIS approach

- **DEFIS (ANR, 2011-2015)**

 Goal: develop techniques and tools to automate fixed-point programming

- Combines conversion and IP block synthesis
 - Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion
 - Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block
The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate fixed-point programming

Combines conversion and IP block synthesis

- Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

- Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block

- Our approach (DALI, Univ. Perpignan):
 - certified fixed-point synthesis for:
 - **Fine grained IP blocks**: dot-products, polynomials, ...
 - **High level IP blocks**: matrix multiplication, triangular matrix inversion, Cholesky decomposition

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/25
The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate fixed-point programming

Combines conversion and IP block synthesis

- Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

- Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block

- Our approach (DALI, Univ. Perpignan):
 - certified fixed-point synthesis for:
 - **Fine grained IP blocks**: dot-products, polynomials, ...
 - **High level IP blocks**: matrix multiplication, triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model

Contributions:
- formalization of p and $\frac{1}{2}$

2. Build a synthesis tool, CGPE, for fine grained IP blocks:

Contributions:
- implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:

- it adheres to the arithmetic model
- it generates code using CGPE

Contributions:
- trade-off implementations for matrix multiplication
- code synthesis for Cholesky decomposition and triangular matrix inversion
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 - Contributions:
 - formalization of $\sqrt{}$ and $/$
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of $\sqrt{}$ and $/$

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ it adheres to the arithmetic model
 ▶ Contributions:
 • implementation of the arithmetic model
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of \(\sqrt{ } \) and \(/ \)

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ it adheres to the arithmetic model
 ▶ Contributions:
 • implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:
 ▶ it generates code using CGPE
 ▶ Contributions:
 • trade-off implementations for matrix multiplication
 • code synthesis for Cholesky decomposition and triangular matrix inversion
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by

$$x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^{\ell}$$

Example: x in $Q_{3.5}$ and $X = (10011000)_2 = (152)_{10} \rightarrow x = (100.11000)_2 = (4.75)_{10}$
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by

$$x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^{\ell}$$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $Q_{i,f}$ format.
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

\Rightarrow The value of x is given by $x = \frac{X}{2^f} = \sum_{\ell = -f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $\mathbb{Q}_{i,f}$ format

Example:
- x in $\mathbb{Q}_{3,5}$ and $X = (10011000)_2 = (152)_{10} \quad \Rightarrow \quad x = (100.11000)_2 = (4.75)_{10}$
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by

$$x = \frac{X}{2^f} = \sum_{\ell = -f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $\mathbb{Q}_{i,f}$ format.

Example:

- x in $\mathbb{Q}_{3,5}$ and $X = (10011000)_2 = (152)_{10} \implies x = (100.11000)_2 = (4.75)_{10}$

How to compute with fixed-point numbers?
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model
- For each coefficient or variable v, we keep track of 2 intervals $\text{Val}(v)$ and $\text{Err}(v)$
- Our model assumes a fixed word-length k

$\text{Val}(v)$ is the range of v

$\text{Err}(v)$ encloses the rounding error of computing v
An interval arithmetic based model

- For each coefficient or variable v, we keep track of 2 intervals $\text{Val}(v)$ and $\text{Err}(v)$
- Our model assumes a fixed word-length k

Val(v) is the range of v

- the format $Q_{i,f}$ of v is deduced from $\text{Val}(v) = [v, \bar{v}]$
 - $i = \left\lceil \log_2(\max(|v|, |\bar{v}|)) \right\rceil + \alpha$
 - $f = k - i$

$$\alpha = \begin{cases} 1, & \text{if } \text{mod}(\log_2(\bar{v}), 1) \neq 0, \\ 2, & \text{otherwise} \end{cases}$$

Err(v) encloses the rounding error of computing v

- a bound ϵ on rounding errors is deduced from $\text{Err}(v) = [e, \bar{e}]$
 - $\epsilon = \max(|e|, |\bar{e}|)$
An interval arithmetic based model

- For each coefficient or variable \(v \), we keep track of 2 intervals \(\text{Val}(v) \) and \(\text{Err}(v) \)
- Our model assumes a fixed word-length \(k \)

\(\text{Val}(v) \) is the range of \(v \)

- the format \(Q_{i,f} \) of \(v \) is deduced from \(\text{Val}(v) = [v, \bar{v}] \)

 \[i = \left\lceil \log_2 (\max(|v|, |\bar{v}|)) \right\rceil + \alpha \]

 \[f = k - i \]

 \[\alpha = \begin{cases}
 1, & \text{if } \text{mod} (\log_2(\bar{v}), 1) \neq 0, \\
 2, & \text{otherwise}
 \end{cases} \]

\(\text{Err}(v) \) encloses the rounding error of computing \(v \)

- a bound \(\epsilon \) on rounding errors is deduced from \(\text{Err}(v) = [e, \bar{e}] \)

 \[\epsilon = \max(|e|, |\bar{e}|) \]
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model

- For each coefficient or variable \(v \), we keep track of 2 intervals \(\text{Val}(v) \) and \(\text{Err}(v) \)
- Our model assumes a fixed word-length \(k \)

\(\text{Val}(v) \) is the range of \(v \)

- the format \(Q_{i,f} \) of \(v \) is deduced from
 \(\text{Val}(v) = [v, \bar{v}] \)

\[
\begin{align*}
 i &= \lceil \log_2(\max(|v|, |\bar{v}|)) \rceil + \alpha \\
 f &= k - i
\end{align*}
\]

\[
\alpha = \begin{cases}
1, & \text{if } \text{mod}(\log_2(\bar{v}), 1) \neq 0, \\
2, & \text{otherwise}
\end{cases}
\]

\(\text{Err}(v) \) encloses the rounding error of computing \(v \)

- a bound \(\epsilon \) on rounding errors is deduced from
 \(\text{Err}(v) = [\epsilon, \bar{\epsilon}] \)

\[
\epsilon = \max(|\epsilon|, |\bar{\epsilon}|)
\]

How to propagate \(\text{Val}(v) \) and \(\text{Err}(v) \) for \(\diamond \in \{+, -, \times, \ll, \gg, \sqrt{\ }, /\} \)?
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1+i_2.f_1+f_2}$
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1 + i_2.f_1 + f_2}$
Fixed-point multiplication

- The output format of a $\mathbf{Q}_{i_1.f_1} \times \mathbf{Q}_{i_2.f_2}$ is $\mathbf{Q}_{i_1+i_2.f_1+f_2}$
- But, doubling the word-length is costly

\[
\text{Err}_x = \left[0, 2^{-f_r} - 2^{-(f_1+f_2)}\right]
\]
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1+i_2.f_1+f_2}$
- But, doubling the word-length is costly

\[\text{Val}(v) = \text{Val}(v_1) \times \text{Val}(v_2) - \text{Err} \times \]
\[\text{Err}(v) = \text{Err} \times + \text{Val}(v_1) \times \text{Err}(v_2) + \text{Val}(v_2) \times \text{Err}(v_1) + \text{Err}(v_1) \times \text{Err}(v_2) \]

- $\text{Err}_x = \left[0, 2^{-f_r} - 2^{-(f_1+f_2)}\right]$
- This multiplication is available on integer processors and DSPs

```c
int32_t mul (int32_t v1, int32_t v2){
    int64_t prod = ((int64_t) v1) * ((int64_t) v2);
    return (int32_t) (prod >> 32);
}
```
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$

$$
\text{Err}/ = \left[-2^{i_2+f_1}, 2^{i_2+f_1}\right]
$$
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1} / Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly

\[\text{Err}_/ = [-2^{f_r}, 2^{f_r}] \]
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly
- How to obtain sharper error bounds on $\text{Err}/$?

- $\text{Err}/ = [-2^{f_r}, 2^{f_r}]$
 - sharper bound
 - risk of overflow at run-time
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly
- How to obtain sharper error bounds on $\text{Err}/$?

\[\text{Err}/ = [-2^{f_r}, 2^{f_r}] \]

- sharper bound
- risk of overflow at run-time

How to decide of the output format of division?

- A large integer part
 - ✓ prevents overflow
 - ❌ loose error bounds and loss of precision

- A small integer part
 - ❌ may cause overflow
 - ✓ sharp error bounds and more accurate computations
The propagation rule and implementation of division

- Once the output format decided $Q_{ir.fr}$

\[
\text{Val}(v) = \text{Range}(Q_{ir.fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}].
\]

\[
\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \text{Err}/\]

- $\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}} \cap \text{Val}(v_2)$ and $\text{Val}(v) = [-2^{ir-1}, -2^{-fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]$
The propagation rule and implementation of division

- Once the output format decided $Q_{ir, fr}$

\[
\text{Val}\left(v\right) = \text{Range}\left(Q_{ir, fr}\right) = \left[-2^{ir-1}, 2^{ir-1} - 2^{fr}\right].
\]

\[
\text{Err}\left(v\right) = \frac{\text{Val}\left(v_2\right) \cdot \text{Err}\left(v_1\right) - \text{Val}\left(v_1\right) \cdot \text{Err}\left(v_2\right)}{\text{Val}\left(v_2\right) \cdot \left(\text{Val}\left(v_2\right) + \text{Err}\left(v_2\right)\right)} + \text{Err}_/^
\]

\[
\text{Val}\left(v_2\right) = \frac{\text{Val}\left(v_1\right)}{\text{Val}\left(v\right) + \text{Err}_/} \cap \text{Val}\left(v_2\right) \text{ and } \overline{\text{Val}}\left(\overline{v}\right) = \left[-2^{ir-1}, -2^{-fr}\right] \cup \left[2^{-fr}, 2^{ir-1} - 2^{fr}\right]
\]

```c
int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{
    int64_t t1 = ((int64_t)V1) << eta;
    int64_t V = t1 / V2;

    return (int32_t) V;
}
```
The propagation rule and implementation of division

- Once the output format decided $Q_{ir,fr}$

\[
\text{Val}(v) = \text{Range}(Q_{ir,fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}].
\]

\[
\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \text{Err}/\text{Val}(v_1)\text{Err}(v_1)\text{Val}(v_2)\text{Err}(v_2)
\]

- \[
\overline{\text{Val}(v_2)} = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}/\text{Val}(v_2)} \cap \text{Val}(v_2) \text{ and } \overline{\text{Val}(v)} = [-2^{ir-1}, -2^{-fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]
\]

```c
int32_t div (int32_t V1, int32_t V2, uint16_t eta) {
    int64_t t1 = ((int64_t)V1) << eta;
    int64_t V = t1 / V2;
    CGPE_ASSERT(((V & 0xFFFFFFFF80000000ll) == 0xFFFFFFFF80000000ll) || ((V & 0xFFFFFFFF80000000ll) == 0));
    return (int32_t) V;
}
```

- Additional code to check for run-time overflows
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.

Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

In the format $\mathbb{Q}_{2.30}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$.

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting \(2 \times 2\) matrices

- Consider \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) with \(a, b, c, d \in [-1, 1]\) in the format \(Q_{2.30}\).

- Cramer’s rule: if \(\Delta = ad - bc \neq 0\) then \(A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} / \Delta\).
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} / \Delta$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$.

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$.

![Division output format diagram](attachment:image.png)
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
The CGPE tool

- CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation
The CGPE tool

- **CGPE** (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step** \(\Rightarrow\) **front-end**
 - computes evaluation schemes \(\Rightarrow\) **DAGs**
The CGPE tool

CGPE (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]

- synthesizes fixed-point code for polynomial evaluation

1. **Computation step** \leadsto **front-end**
 - computes evaluation schemes \leadsto DAGs

2. **Filtering step** \leadsto **middle-end**
 - applies the arithmetic model
 - prunes the DAGs that do not satisfy different criteria:
 - latency \leadsto scheduling filter
 - accuracy \leadsto numerical filter
 - ...

3. **Generation step** \leadsto **back-end**
 - generates C codes and Gappa accuracy certificates
The CGPE tool

- **CGPE (Code Generation for Polynomial Evaluation):** initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step** \(\leadsto\) **front-end**
 - computes evaluation schemes \(\leadsto\) **DAGs**

2. **Filtering step** \(\leadsto\) **middle-end**
 - applies the arithmetic model
 - prunes the DAGs that do not satisfy different criteria:
 - latency \(\leadsto\) scheduling filter
 - accuracy \(\leadsto\) numerical filter
 - ...

3. **Generation step** \(\leadsto\) **back-end**
 - generates C codes and Gappa accuracy certificates
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k - i] - \sum_{i=1}^{3} a_i \cdot y[k - i]$$

```xml
<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
  <coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>
  ...
  <variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct>
```
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

![Graph of signal filtering]
An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

<dotproduct inf="0xb1e91685" sup="0xe1e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>
...
<variable name="y3" inf="0xb1e91685" sup="0xe1e97b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct>

![Graph showing the comparison of original signal to filtered signals in fixed-point and binary formats, along with the log2 error for each implementation.](Image)
Code synthesis for an IIR filter using CGPE

- **Low-pass Butterworth filter with cutoff frequency** $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

```c
int32_t filter ( int32_t u0 /*Q5.27*/, int32_t u1 /*Q5.27*/,
                 int32_t u2 /*Q5.27*/, int32_t u3 /*Q5.27*/,
                 int32_t y1 /*Q6.26*/, int32_t y2 /*Q6.26*/,
                 int32_t y3 /*Q6.26*/ )
{
    int32_t r0 = mul (0x4a5cdb26, y1); //Q8.24 [-2^{-24},0]
    int32_t r1 = mul (0xa6eb5908, y2); //Q7.25 [-2^{-25},0]
    int32_t r2 = mul (0x4688a637, y3); //Q5.27 [-2^{-27},0]
    int32_t r3 = mul (0x65718e3b, u0); //Q2.30 [-2^{-30},0]
    int32_t r4 = mul (0x65718e3b, u3); //Q2.30 [-2^{-30},0]
    int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
    int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
    int32_t r7 = mul (0x4c152aad, u1); //Q4.28 [-2^{-28},0]
    int32_t r8 = mul (0x4c152aad, u2); //Q4.28 [-2^{-28},0]
    int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
    int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
    int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
    int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
    int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
    int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
    int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
    int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
    int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]

    return r17;
}
```
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M'\in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
- Certified code synthesis for triangular matrix inversion
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
- Certified code synthesis for triangular matrix inversion
- Certified code synthesis for matrix multiplication
Linear algebra basic blocks

- Cholesky decomposition
- Triangular matrix inversion
- Matrix multiplication
Linear algebra basic blocks

- Cholesky decomposition
- Triangular matrix inversion
- Matrix multiplication
Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

\[b_{i,j} = \begin{cases} \sqrt{c_{i,i}} & \text{if } i = j \\ \frac{c_{i,j}}{b_{j,j}} & \text{if } i \neq j \end{cases} \]

with \(c_{i,j} = m_{i,j} - \sum_{k=0}^{j-1} b_{i,k} \cdot b_{j,k} \)

Triangular matrix inversion

\[n_{i,j} = \begin{cases} \frac{1}{b_{i,i}} & \text{if } i = j \\ \frac{-c_{i,j}}{b_{i,i}} & \text{if } i \neq j \end{cases} \]

where \(c_{i,j} = \sum_{k=j}^{i-1} b_{i,k} \cdot n_{k,j} \)
Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

\[
b_{i,j} = \begin{cases}
 \sqrt{c_{i,i}} & \text{if } i = j \\
 \frac{c_{i,j}}{b_{j,j}} & \text{if } i \neq j
\end{cases}
\]

with \(c_{i,j} = m_{i,j} - \sum_{k=0}^{j-1} b_{i,k} \cdot b_{j,k} \)

Triangular matrix inversion

\[
n_{i,j} = \begin{cases}
 \frac{1}{b_{i,i}} & \text{if } i = j \\
 -\frac{c_{i,j}}{b_{i,i}} & \text{if } i \neq j
\end{cases}
\]

where \(c_{i,j} = \sum_{k=j}^{i-1} b_{i,k} \cdot n_{k,j} \)

Dependencies of the coefficient \(b_{4,2} \) in the decomposition and inversion of a \(6 \times 6 \) matrix.
FPLA (Fixed-Point Linear Algebra)
Impact of the output format of division

Different functions to set the output format of division

1. $f_1(i_1, i_2) = t,$
2. $f_2(i_1, i_2) = \min(i_1, i_2) + t,$
3. $f_3(i_1, i_2) = \max(i_1, i_2) + t,$
4. $f_4(i_1, i_2) = \lfloor (i_1 + i_2)/2 \rfloor + t,$

i_1 and i_2: integer parts of the numerator and denominator and $t \in [-2, 8]$

Maximum errors with various functions used to determine the output formats of division.

(a) Cholesky 5×5.

(b) Triangular 10×10.

Maximum errors with various functions used to determine the output formats of division.
How fast is generating triangular matrix inversion codes?

- We use $f_4(i_1, i_2) = \lfloor (i_1 + i_2)/2 \rfloor + 1$ to set the output format of division

Generation time for the inversion of triangular matrices of size 4 to 40.
How fast is generating triangular matrix inversion codes?

- We use $f_4(i_1, i_2) = \lfloor (i_1 + i_2)/2 \rfloor + 1$ to set the output format of division.

Error bounds and experimental errors for the inversion of triangular matrices of size 4 to 40.
Decomposing some well known matrices

- 2 ill-conditioned matrices: Hilbert and Cauchy
- 2 well-conditioned matrices: KMS and Lehmer
Decomposing some well known matrices

- 2 ill-conditioned matrices: Hilbert and Cauchy
- 2 well-conditioned matrices: KMS and Lehmer

- Ill-conditioned matrices tend to overflow more often
 - similar behaviour in floating-point arithmetic
- The decompositions of KMS and Lehmer are highly accurate
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles √ and /

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles √ and /

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 - Cholesky decomposition and triangular matrix inversion: study of divisions’ impact
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 - Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives

- Integrate the matrix inversion flow
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 - Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives

- Integrate the matrix inversion flow
Fixed-point code synthesis for linear algebra basic blocks

Fridge: a fixed-point design and simulation environment.

IEEE Standard for Floating-Point Arithmetic.

[MCCS02] Daniel Menard, Daniel Chillet, François Charot, and Olivier Sentieys.
Automatic floating-point to fixed-point conversion for DSP code generation.

GUSTO: An Automatic Generation and Optimization Tool for Matrix Inversion Architectures.

Sum-of-products evaluation schemes with fixed-point arithmetic, and their application to IIR filter implementation.

[FRC03] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen.
Fast, accurate static analysis for fixed-point finite-precision effects in dsp designs.

Design of Fixed-Point Embedded Systems (defis) French ANR Project.

Automatic floating-point to fixed-point conversion for DSP code generation.

[LG08] David R. Koes and Seth C. Goldstein.
Near-optimal instruction selection on DAGs.

Approach based on instruction selection for fast and certified code generation.

[MNR14c] Christophe Mouilleron, Amine Najahi, and Guillaume Revy.
Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic.

Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs for Matrix Multiplication.

Evaluation of static analysis techniques for fixed-point precision optimization.

[LV09] Dong-U Lee and John D. Villasenor.
Optimized custom precision function evaluation for embedded processors.